Cohomology Theories on Compact and Locally Compact Spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally Compact, Ω1-compact Spaces

This paper is centered on an extremely general problem: Problem. Is it consistent (perhaps modulo large cardinals) that a locally compact space X must be the union of countably many ω-bounded subspaces if every closed discrete subspace of X is countable [in other words, if X is ω1-compact]? A space is ω-bounded if every countable subset has compact closure. This is a strengthening of countable ...

متن کامل

On Locally Compact Metrisable Spaces

In Theorem 1 the word metric may be replaced, on the one hand, by regular, on the other, by complete metric. This theorem is of interest chiefly because of the similar well known characterizations of the class of all compact metrisable spaces and of the class of all metrisable spaces which are homeomorphic to complete metric spaces.§ The method of proof also relates it to the two characterizati...

متن کامل

Fuzzifying Strongly Compact Spaces and Fuzzifying Locally Strongly Compact Spaces

In this paper, some characterizations of fuzzifying strong compactness are given, including characterizations in terms of nets and pre -subbases. Several characterizations of locally strong compactness in the framework of fuzzifying topology are introduced and the mapping theorems are obtained.

متن کامل

Locally Compact Path Spaces

It is shown that the space X [0,1], of continuous maps [0, 1] → X with the compact-open topology, is not locally compact for any space X having a nonconstant path of closed points. For a T1-space X, it follows that X [0,1] is locally compact if and only if X is locally compact and totally path-disconnected. AMS Classification: 54C35, 54E45, 55P35, 18B30, 18D15

متن کامل

On continuous cohomology of locally compact Abelian groups and bilinear maps

Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Matemática Iberoamericana

سال: 1986

ISSN: 0213-2230

DOI: 10.4171/rmi/24